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Sets in Which xy + k is Always a Square 
By Ezra Brown 

Abstract. A PA-set of size n is a set {x1,. x,, } of distinct positive integers such that x x1 + k 
is a perfect square, whenever i * j; a Pk-set X can be extended if there exists y ? X sich that 
X U { y } is still a Pk-set. The most famous result on Pk-sets is due to Baker and Davenport, 
who proved that the P,-set {1, 3, 8, 120) cannot be extended. In this paper, we show, among 
other things, that if k - 2 (mod 4), then there does not exist a Pk-set of size 4, and that the 
P- l-set { 1, 2, 5) cannot be extended. 

1. Introduction and Background. Let k be an integer. A Pk-set (of size n) is a set 
{x1,... , x n} of distinct positive integers for which xixj + k is the square of an 
integer, whenever i # j. Thus, (1, 2, 5 ) is a P 1-set of size 3, (1, 79, 98) is a P2-set of 
size 3 and {51, 208, 465, 19732328) is a P1-set of size 4. A Pk-set X can be extended 
if there exists a positive integer y q X such that X U { y ) is still a Pk-set. 

The problem of extending Pk-sets is an old one, dating from the time of 
Diophantus (see Dickson [2, Vol. II, p. 513]). The most spectacular recent advance in 
this area was made by Baker and Davenport (see [1]) who proved that the P1-set 
{1, 3, 8, 120) cannot be extended. Their proof used results from Diophantine 
approximation and involved calculating four real numbers to 600 decimal digits. 
This problem was intriguing enough for three more distinct methods of proof to 
appear over the next ten years, by Kanagasabapathy and Ponnudurai [5], Sansone 
[8] and Grinstead [3]. Recently, Mohanty and Ramasamy [6] have shown that the 

P-1-set (1, 5, 10) cannot be extended, and Thamotherampillai [9] proved that the 
P2-set (1, 2, 7) cannot be extended. (For more details on the history of this problem, 
see [4, especially the references] and [2, Vol. II, pp. 513-520].) 

The aim of this paper is to prove the following theorems about the nonextendabil- 
ity of Pk-sets: 

THEOREM 1. If k 2 (mod 4), then there does not exist a Pk-set of size 4. (This 
greatly generalizes the theorem of [9].) 

THEOREM 2. If k 5 (mod 8), then there does not exist a Pk-set of size 4 with an odd 

xi or with some x;-0 (mod 4). 

THEOREM 3. The following P- 1-sets cannot be extended: 
(a) {n2 + 1, (n + 1)2 + 1, (2n + 1)2 + 4) if n $ 0 (mod4); 
(b) {17, 26, 85); 
(c) (2, 2n2 + 2n + 1, 2n2 + 6n + 5), if n 1 (mod4). 
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THEOREM 4. The P - 1-set (1, 2, 5) cannot be extended. 

We note that the proofs of Theorems 1, 2 and 3 are straightforward and 
elementary, relying on nothing stronger than the Quadratic Reciprocity Law and 
theorems on the group of units of a quadratic field. Theorem 4, however, is more 
subtle, using the results of Baker [1] and the techniques of Grinstead [3]. 

2. Nonexistence of Pk-Sets of Size 4, for k 2 (mod 4). 

THEOREM 1. If k 2 (mod 4), then there does not exist a Pk-set of size 4. 

Proof. Suppose that { X1, X2, X3, X4 } is a Pk-set, with k 2 (mod 4). Then 

xixj + k = Fiji 

say. Looking at the equation (mod 4), we see that 

xixj + k 0 or 1 (mod4) 

so that 

xixj 2 or3 (mod4). 

Hence, at most one of the xi can be even; without loss of generality, we may assume 
that x1, x2 and X3 are odd. This implies that 

xix;-3(mod4) for 1 < i# ] 3. 

Hence, no two of x1, X2, X3 have the same residue (mod 4). As all three are odd, this 
is a contradiction. Thus, no Pk-set of size 4 can exist, if k 2 (mod 4). 

Comment. This is a considerable generalization of the result in [9], and the proof is 
much more elementary. 

3. Nonexistence of Certain Pk-Sets, for k 5 (mod 8). 

THEOREM 2. If k 5 (mod 8), then there does not exist a Pk-set of size 4 with an odd 

xi or with some x -0 (mod 4). 

Proof. Suppose that { X1, X2, X3, X4 } is a Pk-set of size 4, with k 5 (mod 8). Then 
x x1 + k = a2 implies that 

xjxjx 3 4 or 7 (mod 8). 

If x1 is odd and x2 is even, then we must have xlx2 - 0 (mod 4). In that case, x3 and 
X4 must be odd, else x2x3 0 (mod 8). Thus, 

x1x3 -xx4 3 (mod4), 

x3 X4 (mod 4), and so 

X3X4 1 (mod4), 

which is a contradiction. By the above reasoning, we see that a Pk-set can contain at 
most two odd xi and one x; 0 (mod 4). We conclude that if k 5 (mod 8), then a 
Pk-set of size 4 contains no odd x; and no x; 0 (mod 4). Thus, if { X1, X2, X3, X4 } is 

a Pk-set, with k 5 (mod 8), then xi 2 (mod 4) for all i. 

4. Nonextendability of Certain P - 1-Sets. Suppose that X = (a, b, c } is a Pk-set; if 
X can be extended, then there exist d, x, y and z such that 

ad + k = x2, bd+ k = y2, and cd + k = z2. 
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These lead to the equations 

(ay2 - bx2 = (a - b)k, 

(*) ( az2 -cx2 = (a-c)k, and 

bz2-cy2= (b - c)k. 

The degree of difficulty of showing that X cannot be extended depends upon 
whether the system (*) already has solutions that can be found by inspection. For 
example, if k = 1, then there are the obvious solutions x = y = z = 1. If k = -1 
and a = 1, then (1, b, c} is a P_1-set, so that 

b=n2+1, c=m2+1, 

and so the system (*) has the solution x = 0, y = n, z = m. If such solutions exist, 

then one must show that they are the only solutions. This is why Theorem 4 is a bit 
involved. 

It is often easier if the aim is to show that the system (*) has no solutions at all; 
Theorem 1 is a good example of that, as is Theorem 3. 

THEOREM 3. The following P- 1-sets cannot be extended: 

(a) {n2 + 1, (n + 1)2 + 1, (2n + 1)2 + 4), if n i 0 (mod4); 
(b) (17, 26, 85); 
(c) (2, 2n2 + 2n + 1, 2n2 + 6n + 5), if n 1 (mod4). 

Proof. (a) Suppose that {n2 + 1, (n + 1)2 + 1, (2n + 1)2 + 4, d} is a P1-set. 
Then the equations (*) become 

(1) (n2 + 1)y2 ((n + 1)2 + 1)x2 = 2n + 1, 

(2) (n2 + 1)z2 ((2n + 1)2 + 4)x2 = 3n2+ 4n + 4, and 

(3) ((n + 1)+ 1)z2((2n + 1)2+ 4)y2 = 3n2+ 2n + 3. 

First, suppose that n is odd; write n = 4k + E, with E = ?1. Then (1) becomes 

2y2 - x2 ?1 (mod4), 

so that x is odd. 
If E = 1, then 

n2 +1 8k + 2 (mod 16), 

(n +1)2+15(mod16), and 

(2n + 1)2 + 4 13 (mod 16). 

Hence, (3) becomes 

5z2 - 13y2 8 (mod 16), 

so that y and z are both odd. Then, (2) yields 

(8k + 2)z2 - 13x2 8k + 11 (mod 16), 

2 + 3X2 = 11 (mod 16), 

x = 3 (mod 16), 

which is a contradiction. 
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IfE= -1, then 

n2 + 1 8k + 2 (mod 16), 

(n + 1)2+ 1 (mod16), and 

(2n + 1)2 + 4 5 (mod 16). 

Thus, (1) and (3) become 
2y2 x2 -1 (mod8), 

Z 5y2 4 (mod 16). 
Thus, y is even and z is even, but neither is divisible by 4. Putting y = 2 v, z = 2u 
with u and v odd yields 

u2- 5v2 (mod4), 

which is impossible with u- and v odd. 
Next, suppose that n = 2k is even. Then (1) becomes 

y2- 2x2 1 (mod4), 

so that y is odd and x is even. Now (3) becomes 
2z2 - 5y2 4k + 3 (mod8), 

so that z is even. Putting z = 2u and x = 2 v in (2) leads to the equation 

(4k2 + 1)u2-(16k2 + 8k + 5)V2 = 3k2 + 2k + 1. 

If k is odd, this leads to the congruence 
u2- 5v2 2 (mod8), 

which is impossible. 
Thus, if n 1, 2 or 3 (mod4), then the P 1-set {n2 + 1, (n + 1)2 + 1, (2n + 1)2 

+ 4} cannot be extended. 
(b) The situation for n 0 (mod 4) is more complicated, and most likely will have 

to be studied on a case-by-case basis. One such case is n = 4, which corresponds to 
the P1-set (17, 26, 85}. Equations (1) and (2) become 
(4) 17y2 26x2 = 9, 

(5) Z2_ 5X2 = 4. 

Modulo 16, (4) implies that y2 + 6X2 9 (mod 16), which implies that x is even. 
Hence, z is also even; putting z = 2u and x = 2v yields 

(6) u2- 5v2= 1, 

(7) 17y2 - 104v2 = 9. 

Now all solutions to (6) are given by u, + v,,5 = (9 + 4V5)n for n = 0, ?1, ? 2,... 
(see Nagell [7, p. 1971). It is easy to show that 

v. = 0, v1 = 4, vn+1 = 18vn-v _1 forn >1, and 

V_n = -Vn forn > 1; 

so it follows that v 0, 4 or 13 (mod 17). 
If we look at Eq. (7) mod 17, we see that 

-2v2 = 9 (mod 17), 

v2 = 4 (mod 17), 
v_+ 2(modl7). 
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Hence (6) and (7) have no common solution; we conclude that {17, 26, 85} cannot 
be extended. 

(c) Suppose that {2, 2n2 + 2n + 1, 2n2 + 6n + 5} can be extended. Then, the 
equations (*) become 

(8) 2y2 -(2n2 + 2n + )x2 = 2n2 + 2n-1, 

(9) 2z2 -(2n2 + 6n + 5)x2 = 2n2 + 6n + 3, and 

(10) (2n2 + 2n + 1)Z2-(2n2 + 6n + 5)y2 = 4n + 4. 

Examining these equations mod 4 shows that 

2y2_x?2 -1(mod4), 

2 - 3 (mod 4), 

so that x is odd, y is even and z is even. Putting y = 2 v, z = 2 u into (10) yields 

u2 _ 2 = n + I (mod 4), 

which is impossible if n 1 (mod 4). 

5. Nonextendability of the PI-Set { 1, 2, 5 }. We follow the procedure outlined by 
Grinstead in [3]. If {1, 2, 5} is extendable, then the equations (*) become 

y2-2X2=1, z2 -5x2= 4 2z2 - 5y2 = 3, 
so that the two equations 

(I 1) y 2 8t2= 
I 

(12) u2 -5t2= 1 

(where z = 2u, x = 2t) have a common solution other than t = 0, y = u = 1. (The 

solution t = 0, y = u = 1 corresponds to the fact that {t1, 2, 5} is a P 1-set.) We will 

now show that the equations (11) and (12) have no other common solution. 
It is well-known (see Nagell [7, p. 197]) that the solutions to the equations 

(13) y2- 8V2= 1, 

(14) u2 -5w2= 1, 

are given by 

Yn + vUn = (3 + V )n-1, n an integer, and 

Zk + WkJ? = (9 + 4x)k 1, kaninteger. 

Without loss of generality, we may assume vn > 0, Wk > 0; hence n, k > 1. We see 
that 

_n ( 8 (V8 ) and Wk 2 V5 

Put 

P = (3 + / ) V, Q = (9 + 4 ) -/ 

If there is a common solution to (11) and (12) other than t = 0, then there exist 
n >? 2 and k > 2 such that vn = t = Wk. in which case 

p P- = 2v = 2wk = Q -Q 
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Hence, 

p - Q = lp-1 _ 1Q-. <. (p-1 - Q-1) = lp-lQ-1(Q - p) 
Also, P 1 < 1 and Q1 < 1 (because n, k > 2), so that 

P-Q< 5(Q-P). 

It follows that P - Q <0, so that P < Q and Q-1 <P-1. Hence 

0 < Q - p = 1Q-l _ 1p-1 < (1 -)p- 
3 = p-1 

so that 

(15) 0 < QP < 3p1Q1 < p-2 < 1. Q 40 40 

Hence, 

g( Q ) Q 
Thus, 

0 < log~ = -log~ = -log i1 QP) 
P Q g( Q) 

Now if 0< r < 1, then 
2 3 42 rr rr2 -log(1 -r) = r + 2 + +* < r + 2(1+ r + r2 

r2 1 
= r + - 1- r 

Setting r = (Q - P)/Q, we have, from (15), that 

0 <r < <p-2< 

so that 
1 10 

1-r 9 

Furthermore, P > 1, so that p-4 < P-2, and so finally 

O < log = _log( - -) P 
+ g Q- 

2 

< 3 p-2 5. 9 P-4 < 3Ip-2 + 1p-2 
<40 +9 1600 40 30 

2 

= 5p-2 = 5 
64 8 (3 + V8)2n2 

It is clear that 3 + V8 > e, so that we obtain 

0 
< log 

- 

= log 
8 

(9 
4 ) -1 

(16) =(k-1) log(9 + 45)-(n - 1) log(3 + 8) + logf 

< 8e < e 8. 
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We now appeal to a deep theorem of Baker (see [1]), which says that if n >, 2, and 
a ,...,am are nonzero algebraic numbers of degrees < d and heights < A, where 
d > 4, A > 4, and if the rational integers b1,. . . bm, satisfy 

0 < lb1 log a, + - - * + blog aml < eH 

where 0 < 8 < I andH = max(1bj1,...,1bj1l), then 

(17) H < (4m2 - Id 2mlog A)(fn1l)2 

Here, H = n - 1 (plainly n >s k), m = 3 and we can choose 8 = 1 in (16). The 
equations for a, = 9 + 45t a = 3 + A anda3 = 1 are 

2 ~~~2 v16and 
a2 -18a1 + 1 = 0 a - 6a2 + 1 = 0, and 5a2 _ 8 =0. 

This yields a maximum height of A = 18, and we can choose d= 4. Thus, (17) 
becomes 

n - I = H < (49 - 46 _ log 18)4 - 4735(log 18)4 < 4 349 < 10466 

Hence, any n such that 0n = Wk = t is a common solution to (11) and (12) satisfies 
1 < n < 10466. To show that n = 1 is the only solution in this range, it suffices to show 
n 1 (mod M), where M is any integer > 104I6. It happens that 

M= rI P 
p < 1103 

the product of all primes < 1103, is such an integer. The reason for choosing the M 
is clear: if, for all primes p < 1103, we can show that n I (mod p), then n I1 

(mod M) by the Chinese Remainder Theorem. 
We adopt Grinstead's strategy [3] to fit our problem; let us outline the procedure 

here. 
Let p be a prime < 1103, such that for all primes r < p, it has been shown that if 

VI, =Wk, then n 1 (mod r); also, we assume n 1 (mod22 33), which takes 5 
minutes with a pocket calculator to show (ust examine ( v,, } and { Wk } mod 8 and 
53). 

It is easier to work with 01n and Wk when we realize that they are defined by the 
following recurrences: 

1= 0, V2 1; v1+l = 6v,, - 0n-1 forn _ 2; 

W1 0, w2 4; Wk+I = 18Wk - Wk -I for k > 2. 

If we define L(q) to be the length of the period of the sequence { 0,j) (mod q), let 
us generate a sequence of primes q such that L(q) is divisible only by primes not 
exceeding, is power-free (except possibly for 22, 32 and 33) and is divisible by p. By 
our previous assumption, 0,, = Wk implies that n 1 (mod L(q)/p), for each such q. 

Choose the least such q, and consider { Vn 4 and { Wk } mod q. By previous remarks, 
there are only p possible indices for which vn1 Wk (mod q): just those indices 1 
(mod L(q)/p). If a number on in one of those positions does not appear in the 
listing of Wk (mod q), that position is deleted. If all such positions are deleted, except 
n 1 (mod L(q)), then we have shown that n =I (mod p), and we go on to the 
next p. If any positions are not eliminated, we note them and go on to the next q: at 
the next q, we only need to check those positions not previously eliminated. 
Eventually, all positions except n I (mod p) will be eliminated; in the actual 
running of this algorithm, no prime p required more than 10 values of q to be 
eliminated. 
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Let us demonstrate how this works with p = 11. First, let q = 23, because 
L(23) = 11. The sequence { v, } (mod 23) is as follows: 

{0, 1, 6, 12, 20, 16, 7, 3, 11, 17, 22). 
Now the sequence { Wk } (mod 23) looks like this: 

{0,4, 3,4,0,19,20,19). 
Hence, all positions are eliminated except those corresponding to v,, 0, 3 or 20 
(mod 23); thus, if v,, = Wk, then n 1, 5, or 8 (mod 11). 

Next, let q = 43, as L(43) = 44. Then { vn } (mod 43) is as below: 
{0, 1, 6, 35, 32, 28, 7, 14, 34, 18, 31, 39, 31, 18, 34, 14, 
7,28,32,35,6,1,0,42,37,8,11,15,36,29,9,25,12, 
4,12,25,9,29,36,15,11,8,37,42). 

But we know that n 1 (mod 4 (= 44/11)), so that we only need look at the 
positions corresponding to n 1,5,9,...,37, 41 (mod44). Furthermore, we saw 
from our work (mod 23) that n 1, 5 or 8 (mod 11), so that we need only consider 
n 1, 5 or 41 (mod 44). This leaves the values 

vn O, 32, 11 (mod43). 
But { Wk } (mod 43) looks like this: 

{0, 4, 29, 41, 21, 36, 25, 27, 31, 15, 24, 30, 0, 13, 19, 28, 
12,16,18,7,22,2,14,39). 

Neither 32 nor 11 appears on this last list, so we have shown that n 1 (mod 11). 
Curiously, p = 7 needs three values of q to eliminate all but n 1 (mod 7), 

namely q = 13 (which eliminates n 0, 2 (mod 7)), q = 83 (which deletes n 4, 6 
(mod 7)) and q = 113 (which disposes of n 3, 5 (mod 7)). On the other hand, 
p = 31 needs only q = 61 to eliminate all but n 1 (mod 31). 

It is not possible to predict L(q) in advance, except that it can be shown that 
L(q) is a factor of q2 1. Moreover, if 2 is a quadratic residue of q, then 
L(q)lq - 1. 
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